关键词 |
停车场车牌识别系统 |
面向地区 |
完整的车牌识别系统它包括:图像抓拍、车牌识别、车辆检测、数据传输等几局部组成。车牌识别系统也包括字符算法、定位算法、和光学字符算法等。当车辆检测局部信息时触发图像采集单元进行采集。系统的采集单元会自动的对图像影像进行预处理,完够定位出车辆的位置,然而再把识别出来的字符进行分割再进行对比,然而组成号的输出。
能识别输出步骤通常会有以下几点:
车辆检测:可采用地线圈检测、检测技术、红外检测、视频检测等多种方式感知车辆的经过,而且还触发摄像机对车辆进行抓拍采集。
图像采集:经过摄像抓拍主机对通行车辆实时采集、不连续记载。
预处置:自动曝光、自动白均衡、噪声过滤以及边缘加强、伽马校正、比照度调整等。
定位:在经过图像预处置之后对图像进行行列扫描确定区域位置。
字符的分割:在图像中定位出车辆的所在区域后,经过第二值化和灰度化的处理能够准确定位到字符区域,然后依据字符尺寸特征来进行字符分割。
字符辨认:对分割后的字符缩放、特征提取,与字符数据库模板中的规范字符表达方式停止匹配判别。
结果输出:将辨认的结果以文本格式输出。
实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像利于识别。
为了进行车牌识别,需要以下几个基本的步骤: 1、 牌照定位,定位图片中的牌照位置; 2、牌照字符分割,把牌照中的字符分割出来; 3、牌照字符识别,把分割好的字符进行识别,终组成牌照号码。 车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
系统进行视频车辆检测,需要具备很高的处理速度并采用的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。
汽车牌照自动识别技术是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。通过对图像的采集和处理,完成车牌自动识别功能,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别.其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等。
在交通管理系统中可以将车辆在某条道路的平均旅行时间作为判断该道路拥堵状况的一个参数。安装车牌识别设备于道路的起止点,识读所有通过车辆并将牌照号码传回交通指挥中心,指挥中心的管理系统根据这些结果就可计算出车辆平均旅行时间。
山东本地停车场车牌识别系统热销信息