关键词 |
河北智能车牌识别系统,智能车牌识别系统厂家,献县智能车牌识别系统,智能车牌识别系统厂家 |
面向地区 |
车牌识别系统的图像采集
根据车辆检测方式的不同,图像采集一般分为两种,一种是静态模式下的图像采集,通过车辆触发地感线圈、红外或雷达等装置,给相机一个触发信号,相机在接收到触发信号后会抓拍一张图像,该方法的优点是触发率高,性能稳定,缺点是需要切割地面铺设线圈,施工量大;另一种是视频模式下的图像采集,外部不需要任何触发信号,相机会实时地记录视频流图像,该方法的优点是施工方便,不需要切割地面铺设线圈,也不需要安装车检器等零部件,但其缺点也十分显著,由于算法的极限,该方案的触发率与识别率较之外设触发都要低一些。北京中全清茂科技发展有限公司经过严格的算法优化,这两种图像采集模式的识别率和稳定性都。
车牌识别系统的车牌校正
由于受拍摄角度、镜头等因素的影响,图像中的车牌存在水平倾斜、垂直倾斜或梯形畸变等变形,这给后续的识别处理带来了困难。如果在定位到车牌后*行车牌校正处理,这样做有利于去除车牌边框等噪声,更有利于字符识别。目前常用校正方法有:Hough变换法,通过检测车牌上下、左右边框直线来计算倾斜角度;旋转投影法,通过按不同角度将图像在水平轴上进行垂直投影,其投影值为0的点数之和时的角度即为垂直倾斜角度,水平角度的计算方法与其相似;主成分分析法,根据车牌背景与字符交界处的颜色具有固定搭配这一特征、求出颜色对特征点的主成分方向即为车牌的水平倾斜角度;方差小法,根据字符在垂直方向投影点的坐标方差小导出垂直倾斜角的闭合表达式,从而确定垂直倾斜角度;透视变换,利用检测到的车牌的四个顶点经过相关矩阵变换后实现车牌的畸变校正。
车牌识别系统的字符分割
定位出车牌区域后,由于并不知道车牌中总共有几个字符、字符间的位置关系、每个字符的宽高等信息,所以,为了车牌类型匹配和字符识别正确,字符分割是的一步。字符分割的主要思路是,基于车牌的二值化结果或边缘提取结果,利用字符的结构特征、字符间的相似性、字符间间隔等信息,一方面把单个字符分别提取出来,也包括粘连和断裂字符等特殊情况的处理;另一方面把宽、高相似的字符归为一类从而去除车牌边框以及一些小的噪声。一般采用的算法有:连通域分析、投影分析,字符聚类和模板匹配等。污损车牌和光照不均造成的模糊车牌仍是字符分割算法所面对的挑战,有待更好的算法出现并解决以上问题。
车牌识别系统的字符识别
对分割后的字符的灰度图像进行归一化处理,特征提取,然后经过机器学习或与字符数据库模板进行匹配,后选取匹配度的结果作为识别结果。目前比较流行的字符识别算法有:模板匹配法、人工神经网络法、支持向量机法和Adaboost分类法等。模板匹配法的优点是识别速度快、方法简单,缺点是对断裂、污损等情况的处理有一些困难;人工神经网络法学习能力强、适应性强、分类能力强但比较耗时;支持向量机法对于未见过的测试样本具有更好的识别能力且需要较少的训练样本;Adaboost分类法能侧重于比较重要的训练数据,识别速度快、实时性较高。我国车牌由汉字、英文字母和阿拉伯数字3种字符组成,且具有统一的样式,这也是识别过程的方便之处。但由于车牌很容易受外在环境的影响,出现模糊、断裂、污损字符的情况,如何提高这类字符和易混淆字符的识别率,也是字符识别的难点之一。易混淆字符包括:0与D、0与Q、2与Z、8与B、5与S、6与G、4与A等。
车牌识别系统还可以与其他智能设备和系统相结合,比如与智能导航系统结合可以为驾驶员提供实时的路况信息和导航引导、与智能停车系统结合可以实现车位预约和导引等功能,拓宽更大的应用范畴。
车牌识别系统在交通管理、停车管理、公安与安全等领域具备广泛的应用前景,未来随着技术的不断创新和发展,车牌识别系统将成为智能化城市交通管理的重要驱动力。
山东安胜智能科技有限公司是一家从事智能停车场管理系统研发、开发、生产、销售、施工于一体的综合性企业。基于对电子、智能和信息化技术的深刻理解,协助客户提高停车场管理效率、增强安保能力、提升安全级别。为客户量身打造出一套技术质量可靠的产品,全面的应用解决方案和完善的服务。 公司主要致力于:车牌号识别系统、智能道闸、停车场收费管理系统、通道闸、蓝牙远距离停车场系统、智能小区一卡通系统、电动伸缩门、岗亭、旗杆、岗亭、护栏。山东安胜智能科技有限公司凭借优势,技术实力及的服务,在国内市场赢得了业界同仁的信赖和美誉,其技术和产品广泛应用于小区、医院、酒店、机场、企业单位、港口码头、旅游景区等项目。安胜参与过众多国内停车场管理系统工程,累积了丰富的停车规划创立设计的经验,能为不同的项目提供一套套不同的解决方案。